Choosing Improved Initial Values for Polynomial Zerofinding in Extended Newbery Method to Obtain Convergence
نویسندگان
چکیده
In all polynomial zerofinding algorithms, a good convergence requires a very good initial approximation of the exact roots. The objective of the work is to study the conditions for determining the initial approximations for an iterative matrix zerofinding method. The investigation is based on the Newbery’s matrix construction which is similar to Fiedler’s construction associated with a characteristic polynomial. To ensure that convergence to both the real and complex roots of polynomials can be attained, threemethods are employed. It is found that the initial values for the Fiedler’s companionmatrix which is supplied by the Schmeisser’s method give a better approximation to the solution in comparison to when working on these values using the Schmeisser’s construction towards finding the solutions. In addition, empirical results suggest that a good convergence can still be attained when an initial approximation for the polynomial root is selected away from its real value while other approximations should be sufficiently close to their real values. Tables and figures on the errors that resulted from the implementation of the method are also given.
منابع مشابه
Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...
متن کاملA Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملEXTENDED PREDICTOR-CORRECTOR METHODS FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY
In this paper, the (m+1)-step Adams-Bashforth, Adams-Moulton, and Predictor-Correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. The conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. Each of these algorithms has advantages over current methods. Moreover,for each algorithm a convergence formula can b...
متن کاملA New Iterative Method for Solving Nonlinear Equations
In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually c...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012